DPP - 5 (Gravitation)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/99

Video Solution on YouTube:-

Written Solution on Website:-

https://youtu.be/nuy5iKQOtAU

https://physicsaholics.com/note/notesDetalis/54

Q 1. A satellite is orbiting round the earth at a height h above the surface of the earth. If this distance h is increased, the period of satellite will
(a) decrease
(b) increase
(c) remain unaffected
(d) become zero

Q 2. The period of revolution of an earth's satellite close to the surface of earth is 60 minutes. The period of another earth's satellite is an orbit at a distance of three times earth's radius from its surface will be (in minutes)
(a) 90
(b) $90 \sqrt{8}$
(c) 270
(d) 480

Q 3. A satellite takes $\frac{1}{8}$ years to move round the earth in its permissible orbit of radius R. The period when it revolves round the earth in an orbit of radius ' $2 R^{\prime}$ ' is
(a) $\frac{1}{2 \sqrt{2}}$ years
(b) $2 \sqrt{2}$ years
(c) 4 years
(d) $\frac{1}{4}$ years

Q 4. The figure shows the motion of a planet around the sun in an elliptical orbit with sun at the focus. The shaded areas A and B are also shown in the figure which can be assumed to be equal. If t_{1} and t_{2} represent the time for the planet to move from a to b and d to c respectively, then

(a) $t_{1}<t_{2}$
(b) $t_{1}>t_{2}$
(c) $t_{1}=t_{2}$
(d) From the given information, the relation between t_{1} and t_{2} cannot be determined.

Q 5. The figure shows elliptical orbit of a planet m about the sun S. The shaded area $S C D$ is twice the shaded area SAB. If t_{1} is the time for the planet to move from C to D and t_{2} is the time to move from A to B then:

(a) $t_{1}=t_{2}$
(b) $t_{1}>t_{2}$
(c) $t_{1}=4 t_{2}$
(d) $t_{1}=2 t_{2}$

Q 6. The figure shows a planet in elliptical orbit around the sun S. The kinetic energy of the planet will be maximum when the planet is at :

(a) P_{1}
(b) P_{2}
(c) P_{3}
(d) P_{4}

Q 7. A planet moves around the sun. At a given point P, it is closest from the sun at a distance d_{1} and has a speed V_{1}. At another peint Q , when it is farthest from the sun at a distance d_{2}, its speed will be
(a) $\frac{d_{1}^{2} V_{1}}{d_{2}^{2}}$
(b) $\frac{d_{2} V_{1}}{d_{1}}$
(c) $\frac{d_{1} V_{1}}{d_{2}}$
(d) $\frac{d_{2}^{2} V_{1}}{d_{1}^{2}}$

Q 8. Kepler's second law regarding constancy of aerial velocity of a planet is a consequence of the law of conservation of
(a) Energy
(b) Angular momentum
(c) Linear momentum
(d) None of these

Q 9. A planet moves around the sun in an elliptical orbit. When earth is closest from the sun, it is at a distance r having a speed v. When it is at a distance $4 r$ from the sun its speed will be:
(a) $4 v$
(b) $\frac{\mathrm{v}}{4}$
(c) 2 v
(d) $\frac{\mathrm{v}}{2}$

Q 10. In a binary star system one star has thrice the mass of other. The stars rotate about their common center of mass then :
(a) Both stars have same angular momentum about common centre of mass
(b) Both stars have angular momentum of same magnitude about common center of mass
(c) Both stars have same angular speeds
(d) Both stars have same linear speeds

Q 11. A binary star system consists of two stars A and B which have time period T_{A} and T_{B}, radius R_{A} and R_{B} and mass M_{A} and M_{B}. Then
(a) If $T_{A}>T_{B}$ then $R_{A}>R_{B}$
(b) If $T_{A}>T_{B}$ then $M_{A}>M_{B}$
(c) $\left(\frac{T_{A}}{T_{B}}\right)^{2}=\left(\frac{R_{A}}{R_{B}}\right)^{3}$
(d) $T_{A}=T_{B}$

Q 12. The two stars in a certain binary star system move in circular orbits The first star α moves in an orbit of radius $1 \times 10^{9} \mathrm{~km}$. The other star β moves in an orbit of radius $5 \times 10^{8} \mathrm{~km}$. What is the ratio of masses of star β to the star α ?
(a) 1
(b) 2
(c) $\frac{5}{13}$
(d) $\frac{3}{7}$

Q 13. A planet revolves around sun whose mean distance is 4.588 times the mean distance between earth and sun. The revolution time of planet will be
(a) 1.25 years
(b) 1.59 years
(c) 0.89 years
(d) 2 years

Q 14. If the radius of earth's orbit is made $1 / 4$, the duration of an year will become
(a) 8 times
(b) 4 times
(c) $\frac{1}{8}$ times
(d) $\frac{1}{4}$ times

Q 15. Adoublestar is a system of two stars of masses m and 2 m , rotating about their center of mass only under their mutual gravitational attraction. If r is the separation between these two stars then their time period of rotation about their center of mass will be proportionalto
(a) $r^{\frac{3}{2}}$
(b) r
(c) $m^{\frac{1}{2}}$
(d) $m^{-\frac{3}{2}}$

Q 16. A satellite which is geostationary in a particular orbit is taken to another orbit. Its distance from the center of earth in new orbit is 2 times that of the earlier orbit. The time period in the second orbit is
(a) 4.8 hours
(b) $48 \sqrt{2}$ hours
(c) 24 hours
(d) $24 \sqrt{2}$ hours

Answer Key

Q. 1 b	Q. 2 d	Q. 3 a	Q. 4 c	Q. 5 d
Q. 6 a	Q. 7 c	Q. 8 b	Q. 9 b	Q. 10 c
Q. 11 d	Q. 12 b	Q. 13 d	Q. 14 c	Q. 15 a
Q. 16 b				

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI ₹56,000

18 months

No cost EMI

12 months
No cost EMI

6 months
No cost EMI
₹28,000

To be paid as a one-time payment
View all plans

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
Study Planner

To be paid as a one-time payment View all plans
Use code PHYSICSLIVE to get 10\% OFF on Unacademy PLUS.

Written Solution

DPP-5 Gravitation: Kepler's Law, Binary Star System
By Physicsaholics Team

Solution: 1

$$
\because T^{2} \alpha \gamma^{3}
$$

if $\gamma \uparrow \Rightarrow T \uparrow$
So; if height of satellite is increased
\Rightarrow Time period will in creased

Ans. b

Solution: 2

$$
\begin{aligned}
& \because T^{2} \alpha \gamma^{3} \\
& \Rightarrow \quad \frac{T_{1}{ }^{2}}{T_{2}{ }^{2}}=\frac{\gamma_{1}{ }^{3}}{\gamma_{2}{ }^{3}} \\
& \frac{(60 \mathrm{~min})^{2}}{T_{2}^{2}}=\frac{R^{3}}{\left(R+3 R^{3}\right.}=\frac{R^{3}}{(4+k)^{3}} \\
& T_{2}^{2}=4^{3} \times(60 \mathrm{~min})^{2}=64 \times(60 \mathrm{~min})^{2}=8^{2}(60 \mathrm{~min})^{2} \\
& T_{2}=480 \mathrm{ming} \text { Are }
\end{aligned}
$$

Solution: 3

$$
\begin{aligned}
& \because T^{2} \alpha \gamma^{3} \\
& \Rightarrow \quad \frac{T_{1}{ }^{2}}{T_{2}{ }^{2}}=\frac{\gamma_{1}{ }^{3}}{\gamma_{2}{ }^{3}} \\
& \frac{\left(\frac{1}{8} \text { year }\right)^{2}}{T_{2}^{2}}=\frac{h^{3}}{\left(x x^{3}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& T_{2}=\frac{1}{2 \sqrt{2}} \text { genders ans }
\end{aligned}
$$

Ans. a

Solution: 4
second law of Kepler states that radius vectorfrom sun to the planet swaps equal area in equal time.

Ans. C

Solution: 5

$\because \operatorname{Area}(S C \cdot D)=2$ Arnal (SABS)

Ans. d

Solution: 6

(KE) max \Rightarrow what (V) max.
$\because F_{c}=\max$ at
so; $\Rightarrow V_{\text {ingot }}+P_{1}$
so; (KE Oman at P_{1} As
Ans. a

Solution: 7

$$
\begin{aligned}
& \because d_{1}<d_{2} \\
& \because L=\text { constant } \\
& L L=\text { angular momentum }] \\
& m v_{1} d_{1}=m v_{2} d_{2} \\
& \Rightarrow v_{2}=\frac{v_{1} d_{1}}{d_{2}}
\end{aligned}
$$

Ans. c

Solution: 8
"The areal velocity is constant" is keplerts Second Law.

$$
\left(\frac{d A}{d t}\right)=\frac{L}{2 m}=\text { constant }
$$

where; $L=$ Angular momentum
$4 \mathrm{~m}=\mathrm{mass}$ of planet
Hence; this lane ts derived from law of conservation of angulation mom en tum

Solution: 9

$$
\begin{aligned}
\because L & =\text { constant } \\
m v r & =m v_{2}(4 r)
\end{aligned}
$$

$$
\Rightarrow \quad v_{2}=\frac{v}{4} \text { Ans. }
$$

Ans. b

Solution: 10

Ans. c

Solution: 11

$$
T_{A}=\frac{2 n}{\omega_{A}}
$$

Angular speed (it) Som stars in a
binary stan system is equal
so;

$$
T=\frac{2 川}{\omega}
$$

Ans. d

Solution: 12

so;

$$
\begin{aligned}
& m_{\alpha} R_{\alpha}=m_{\alpha} \alpha_{B} \\
& \frac{m_{\alpha}\left(m 0^{9}\right)}{m_{\beta}}=\frac{5 \times 1 \alpha^{8}}{1 a \times 10^{\circ}}=\frac{1}{2} \\
& \frac{m(2)}{m_{B}}=\frac{1}{2} \Rightarrow \frac{m_{B}}{m_{\alpha}}=\frac{2}{r} \text { sis }
\end{aligned}
$$

Ans. b

Solution: 13
if radians of earth orbit $=R$
then radius of Planet's orbit $=1.588 \mathrm{R}$

$$
\begin{aligned}
& \left.\frac{T_{e}^{2}}{T_{p}^{2}}=\frac{R^{3}}{(1.588 R)^{3}}=\frac{1}{(10288)^{3}}\right]^{3} \\
& T_{p}^{2}=T_{e}^{2}\left(1 .\left[8 \varepsilon^{2}\right)^{3}\right. \\
& \left.T_{p}=(1 \text { jean })^{2} r_{4}\right) \\
& T_{p}=\text { (1) earl } \times 2 \\
& T_{p}=2 \text { years wm }
\end{aligned}
$$

Ans. d

Solution: 14

$$
\begin{aligned}
& \because T^{2} \alpha \gamma^{3} \\
& \frac{T_{1}^{2}}{T_{2}^{2}}=\left(\frac{R_{1}}{R_{2}}\right)^{3} \\
& \frac{T_{1}^{2}}{T_{2}^{2}}=\left(\frac{R_{1}}{R_{1 / 4}}\right)^{3}= \\
& T_{2}^{2}=\frac{T_{1}^{2}}{84}
\end{aligned}
$$

Ans. c

Solution: 15

$$
F_{c}=\frac{m \omega^{2}}{R}
$$

$$
\begin{aligned}
& n_{1} \ldots n_{2} \\
& n_{1}+n_{2}=r \text { n } \\
& n_{1}=2 n_{2}
\end{aligned}
$$

$$
\begin{aligned}
& F_{c}=\frac{m w}{R} \\
& G(m)(2 m) \\
& r^{2}
\end{aligned}=m \omega^{2} x_{1}=m w^{2}\left(\frac{2 x}{3}\right)
$$

$$
\frac{2 G m 2}{\gamma^{2}}=\gamma^{2} \omega^{2}\left(\frac{\gamma r}{3} \Rightarrow \omega^{2}=\frac{3 G M}{\gamma^{3}}\right.
$$

$$
\omega=\sqrt{\frac{3 \sigma^{\prime} \mu^{3}}{r^{3}}}
$$

$$
2 n_{2}+n_{2} E=r
$$

$$
3 n_{2}=r
$$

$$
\begin{aligned}
& t=\frac{2 a}{\omega} \\
& T=2 \pi \sqrt{\frac{r^{3}}{3 n M}} \\
& T \alpha r^{3 / 2} \quad T \alpha m^{-1 / 2}
\end{aligned}
$$

Ans. a

Solution: 16

$$
\begin{aligned}
& T^{2} \alpha \gamma^{3} \\
& \frac{T_{1}{ }^{2}}{T_{2}{ }^{2}}=\frac{r_{1}{ }^{3}}{r_{2}{ }^{3}} \\
& \frac{T_{1}^{2}}{T_{2}^{2}}=\frac{x_{1}^{3}}{\left(2 x_{1}^{3}\right.}=\frac{1}{8}= \\
& T_{2}^{2}=8 T_{2}^{2} \cdot \\
& T_{2}=2 \sqrt{2} T_{1}=2 \sqrt{2} \times(24+\text { houns) } \\
& T_{2}=48 \pi^{2} \text { hrauke has }
\end{aligned}
$$

Ans. b

For Video Solution of this DPP, Click on below link

Video Solution on Website:-
https://physicsaholics.com/home/courseDetails/99

Video Solution on YouTube:-

Written Solution on Website:-
https://youtu.be/nuy5iKQ0tAU
https://physicsaholics.com/note/notesDetalis/54

- subscribe

0
@ NEET Physics
@ITTEE_Physics physicsaholics.com

CLICK

Chalo Nikis

